
Graph Algorithms in Neo4j using CYPHER
P.Balaghan & K.A.Hawick

Computer Science Department, University of Hull

Aim

Can complex Graph-Based Algorithms be imple-
mented into a Graph Database such as Neo4j, using
only a language created for the purpose of interact-
ing with the database?

Introduction

Graph Databases can store data in a graph-like
structure. This allows the opportunity to implement
advance graph algorithms into the database to find
new and interesting facts about the data. Tradi-
tional SQL databases could allow some graph-like
functions by using the JOIN command to bring var-
ious tables together, however this is computationally
expensive and does not scale well. (Robinson et al.,
2013)

Neo4j and CYPHER

Neo4j is a JVM-based Graph Database and fol-
lows the Property Model. A Property Model Graph
Database contains Nodes (N), Edges (E) and Prop-
erties (P ) such that:

G = (N,E,P)
Properties are Key-Pair items which can be attached
to both Nodes and Edges. (Angles and Gutierrez,
2008) CYPHER is a Domain Specific Query Lan-
guage used to interact with a Neo4j Database. It is
written in a combination of Scala and Java and uses
ASCII-like art within its language to define graph
queries.

MATCH (n)-[r]->()
RETURN n

Figure 1: An example CYPHER query to find all outgoing nodes
from node "n". The parenthesis surrounding the ’n’ represent
a node. The square brackets around the ’r’ represent relation-
ships. The query would find all nodes and relationships within
the graph

The query in fig. 1 essentially states "find all nodes
which have a direct, outgoing relationship with node
n". (Vukotic and Watt, 2015)

Algorithms Used

A selection of algorithms were used and they ranged
from the very basic, such as the average degree of the
graph, to the complex, such as finding the Minimum
Dominating set of a Graph.
One of the most basic graph functions is finding the
degree of a node. This is the amount of edges which
are either going into, or out of a particular node.
The average degree of a graph (Equ. 1) can be an
indicator to how complex a graph is.

〈k〉 ≡ 1
N

N∑
i=1

ki (1)

Betweenness Centrality finds the most critical node
in a graph. It has previously been used to as-
sess power and water network robustness (Hawick,
2012a) (Hawick, 2012b). It can be calculated by
finding all shortest paths within a graph, and if any
immediate nodes within a path exist, they are given
a weight. Equ. 1 shows a way of doing this. (Free-
man, 1977)

gk =
∑
i 6=j

Ck(i, j)
C(i, j)

(2)

One of the more complex Algorithms for a Graph is
finding the Minimum Dominating Set. This is the
minimum amount of Nodes required to have an edge
connection to every other node in the database. This
can be done by using the greedy algorithm (Parekh,
1991) in Alg. 1.

Figure 2: Minimum Dominating Set Of a Graph. The Blue
nodes represent the dominating nodes, while the Green nodes
represent the dominated node

Algorithm 1 Minimum dominating set of a Graph
S := ∅
while ∃ white nodes do
choose v ∈ {x|w(x) = maxu∈V {w(u)}}
S := S ∪ v

end while

Other algorithms implemented into CYPHER in-
clude Amount of Triangles in a Graph, ShortestPath
Algorithm, the allShortestPaths algorithm and the
Graph Diameter.

Results

Some algorithms can be converted into CYPHER.
One such algorithm is the average degree. In
Fig. 1, it shows how this was done. The query
gets a count of all of the nodes,and stores it in
countOfNodes, then it gets the total count of rela-
tionships and stores it into countOfRelationships.
The countOfRelationships are then divided by
the countOfNodes to produce the Average Degree
of the Graph.

MATCH(n)
WITH count(n) as countOfNodes

MATCH (n)-[r]-()
WITH count(r) as countOfRelationships,

countOfNodes
RETURN (tofloat(countOfRelationships) /

tofloat(countOfNodes))
Figure 3: The Average Degree of a Node in CYPHER for a
Neo4J Graph

Once more complex algorithms where implemented
into CYPHER, limitations were found. CYPHER
struggled with the concept of recursive algorithms.
While the queries themselves are recursive, algo-
rithms such as the Graph Dominating Set require
specific sections of code to be recursive. CYPHER
was not able to do this. The table in fig.4 shows
a break-down of the various algorithms used, and
whether they were successfully implemented into
CYPHER.

Algorithm Successfully Implemented
Average Degree Yes

Betweenness Centrality Yes
Triangles in Graph Yes
Shortest Path Yes

All Shortest Paths Yes
Graph Diameter Yes

Graph Domination No
Clustering Coefficient Yes
Component Labelling No

Figure 4: A table showing the final results of the experiment

Conclusion

The results show that some algorithms can success-
fully be converted into CYPHER and run on a Neo4j
Graph Database. However, once more complex al-
gorithms are introduced, it does not currently have
the capability to implement these algorithms. These
limitations prevent further complex algorithms from
being implemented into CYPHER. Future work in-
volves comparing the performance of these algo-
rithms in CYPHER with those from a high level
language,and comparing the complexity of these al-
gorithms when ran through CYPHER.

References

Angles, R. and C. Gutierrez (2008). Survey of graph database
models. ACM Computing Surveys 40 (212), 1–39.
Freeman, L. C. (1977). A Set of Measures of Centrality Based
on Betweenness.
Hawick, K. A. (2012a). Betweenness centrality metrics for as-
sessing electrical power network robustness against fragmen-
tation and node failure. Proc. International Conference on
Power and Energy Systems (EuroPES 2012), 186–193.
Hawick, K. A. (2012b). Water Distribution Network Robust-
ness and Fragmentation using Graph Metrics Water Distri-
bution Network Robustness and Fragmentation using Graph
Metrics.
Parekh, A. K. (1991). Analysis of a greedy heuristic for finding
small dominating sets in graphs. Information Processing
Letters 39 (5), 237–240.
Robinson, I., J. Webber, and E. Eifrem (2013). Graph
Databases.
Vukotic, A. and N. Watt (2015). Neo4j In Action (First Edit
ed.). Shelter Island: Manning Publications co.


